NIR/MIR DUAL-SENSOR MACHINE VISION SYSTEM FOR
ONLINE APPLE STEM—END/CALYX RECOGNITION
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ABSTRACT. A near—infrared (NIR) and mid—infrared (MIR) dual-camera imaging approach for online apple stem—end/calyx
detection is presented in this article. How to distinguish the stem—end/calyx from a true defect is a persistent problem in apple
defect sorting systems. In a single—camera NIR approach, the stem—end/calyx of an apple is usually confused with true defects
and is often mistakenly sorted. In order to solve this problem, a dual-camera NIR/MIR imaging method was developed. The
MIR camera can identify only the stem—end/calyx parts of the fruit, while the NIR camera can identify both the stem—end/calyx
portions and the true defects on the apple. A fast algorithm has been developed to process the NIR and MIR images. Online
test results show that a 100% recognition rate for good apples and a 92% recognition rate for defective apples were achieved
using this method. The dual-camera imaging system has great potential for reliable online sorting of apples for defects.
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pple defect inspection is an important procedure

that affects the sorting or grading result in the fruit

industry. Because the traditional visual apple—

by—apple inspection is labor intensive and prone
to human errors and variability, a machine vision system for
automatic online defect inspection is needed to speed up the
inspection procedure.

Near—infrared (NIR) spectroscopy has been widely used
in fruit quality studies because it is quick and noninvasive.
Previous research has shown that in the near—infrared range
between 700 nm to 2200 nm, the reflectance from bruised
areas, stem—ends, and calyxes of apples is less than from the
non-bruised areas of apples. Therefore, machine vision
systems equipped with near—infrared imaging sensors have
been widely used in the research of apple defect inspection
and quality estimation. Throop et al. (1995) developed an
algorithm to identify both old and new bruises on Red
Delicious apples from NIR apple images. Bollen et al. (1999)
compared the methods for estimating the size of apple
bruises. Paulus and Schrevens (1999) used image processing
tools to quantify the average shape of randomly chosen
apples. Leemans et al. (1999) exploited a color vision
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imaging system and a Bayesian classification method to
segment apple defects. However, one of the persistent
obstacles in the implementation of automatic apple defect
detection is how to identify the apple stem—end/calyx. These
natural parts on apples normally present similar intensity
levels as true defects in a near—infrared image. As such, a
computer—based automatic vision system is confused by the
natural parts of an apple with true defects. This is a serious
issue in apple sorting automation. Because the orientations of
apples along a transportation packing line are unpredictable
during the inspection process, the possibility of misclassi-
fication is unacceptably high.

To address this problem, researchers have proposed
several possible solutions. Wolfe and Sandler (1985) devel-
oped an image processing algorithm to extract both long and
short stems and calyxes. Miller and Delwiche (1991)
proposed an orientation algorithm to recognize the surface
concavities on three—dimensional information. Yang (1993)
used a structured lighting system, in which controlled
illumination and cameras were used to reconstruct a
stereovision image of objects. Crowe and Delwiche (1996a,
1996b) designed a real-time defect detection system using
structured illumination to detect stem—ends and calyxes.
Most of these methods focused on detecting the natural
concave shape or reconstructing the three—dimensional
information of stem—ends or calyxes. In the application of a
multi-lane detection system, these methods might not be
suitable due to the requirement of real-time speed and
accuracy.

Compared with single—spectrum inspection, which pro-
vides limited information for distinguishing the stem—ends
and calyxes, multi-spectrum detection provides richer
information in multiple images of different spectrum sensing
results of the same object. Tao (1996, 2000), Wen and Tao
(1998a, 1998b, 2000), and Tao and Wen (1999) discovered
that by using a mid—infrared (MIR) camera with a spectrum
range between 3 and 5 pwm, bruised areas of fruit were no
longer sensed and only the stem—ends and calyxes of apples
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remained sensitive to the sensor. A dual-wavelength sensing
method was developed and found capable of discriminating
apple stem—ends and calyxes. However, in the dual-wave-
length sensing system, the two image sensors must be placed
at the same viewing position. In general, for typical online
applications, two sensors are usually mounted at adjacent but
different positions. The shift between sensing positions leads
to a differences in pixel registration between the MIR and
NIR images. Thus, there is a need for acquiring dual-image
registration and combined algorithm for online processing.
The objective of this research was to study the feasibility
of applying the dual-wavelength method and develop image
processing algorithms for online apple defect inspection. In
general, apples are stored in a low—temperature environment
(usually 3°C to 4°C) before being inspected. This study is
applied only to apples from cold storage. The algorithms,
including dual-image registration, image normalization,
inverse image transformation, and dual image combination,
were applied to eliminate apple stem—ends and calyxes from
true defects during inspection. These algorithms were
studied to expand the dual-wavelength method along with
the dual-image registration and synthesis strategies so that
the online defect identification accuracy can be improved.

MATERIALS AND SYSTEMS
MACHINE VISION SYSTEM

The machine vision system for apple defect inspection
consists of a dual-spectrum infrared sensing system and a
computer—controlled image—grabbing system. A lighting
chamber made by Agri—Tech, Inc., is used to provide uniform
illumination for the infrared sensors. The 120 X 100 X 25 cm
(W X L X H) chamber is made of lattice—patterned sheet
metal, and the V—shaped interior surface of the chamber is
painted flat white to provide diffuse light reflection and
eliminate shadows (Tao et al., 1995; Tao, 1996, 1998).
Lighting is provided by ten warm—white fluorescent lamps
arranged uniformly around a V—shaped surface right above
the conveyor. One side of the chamber can be opened to allow
camera mounting.

Two image sensors are mounted in the top center of the
chamber. The near—infrared sensor utilized in the system is
a Hitachi KP-MI CCD monochromatic camera with a

Camera and Power Cables

Corrion 700 nm interference long—pass filter and a focal
length of 16 mm. The mid—infrared sensor is an Indigo
uncooled thermal camera with a sensitive spectrum range
from 7.5 to 13.5 microns. This camera consists of a Boeing
Gen II FPA incorporating a 320 X 240 matrix of microbolom-
eter detectors. The pixel size of the detector is 51 X 51 um,
and the standard focal length is 25 mm. The two infrared
sensors are synchronized to obtain images at the same pace.
Both near—infrared images (NIR image) and mid—infrared
images (MIR image) are captured, processed, and analyzed
by a host computer equipped with an imaging board (Matrix
Meteor/RGB).

A roller conveyor belt is constructed to support and move
apples for up to six lanes. The apples are rotating and moving
when they are passing through the field of view of the image
sensors. The online imaging system grabs images at a rate of
30 frame/sec, which guarantees that the entire surface of each
apple will be imaged and processed. A drive controller and
speed controller are coordinated with an optical encoder,
providing timing signals for both online mechanical and
electrical synchronization. The system configuration is
shown schematically in figure 1.

Test samples for both good and defective Red Delicious
apples were used to verify the effectiveness of the online
processing algorithms. The properties of the test samples are
listed in table 1. A total of 155 apples (19 good and
136 defective) were selected for the test. Samples were
stored at about 4°C before testing. Shortly after they were
taken out of the cold storage (less than 5 minutes), the
samples were randomly placed on the roller conveyor.

DuAL IMAGING METHODS
DUAL-IMAGE REGISTRATION

Due to the sensor differences in the dual-wavelength
sensing system, two images are not in a point—by—point
correspondence. Coordination resolution differences exist
between the two sensor images. The near—infrared image is
640 X 480, while the mid—infrared image is 320 X 240.
Proper registration is needed to enable effective information
compensation.

Schematic representation of the relationship among the
NIR sensor, the MIR sensor, and the sensing objects is shown

Computer
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Figure 1. Schematic representation of the machine vision system for the online defect inspection.
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Table 1. Properties of the samples used for testing the performance
of the online dual NIR/MIR sensing system.

Features Parameters

Sample type Red Delicious apple

Total number 155

Sample sizes Radius: 79-81 mm and 68-70 mm
Good samples 19

Defected samples 136

Defect types Bruise, insect holes

in figure 2. In figure 2, both sensors (camera A and camera B)
are focused on object C. The horizontal distance between
camera A and camera B is the camera gap and is represented
by a constant (d). Let & represent the height from the lens to
the conveyor belt and r represent the radius of the object.
Assume that the object on the conveyor belt is spherical.
Points a and b are two points on the circle that represent the
limitation points of the view of camera A and camera B, and
lo represents the horizontal distance between the object and
the lens of camera A. Therefore, lp + d is the horizontal
distance from the object to camera B. The angle (0) between
points a and b represents the “blind” area between camera A
and camera B. In this blind area, the object is only visible to
one of the sensors. Angle 0 is determined by the following
equation:

r

)
Vo +d)* +(h—r)?
1 ly+d

\ i
o (\/(lo+d)2+(h—r)2

r l
( ) 1 0 )
VIg +(h—71)? Jio? +(h—r)? @

In our application, & >> d, h >> r, h >> Iy, and O
approximately equals zero, which means the blind area
between the dual sensors can be ignored. Both sensors, NIR
and MIR, cover the same sensing range on the object.

Two—dimensional (2-D) image—coordinate transforma-
tion is necessary to map objects in the original MIR image
(OMI) to those in the original NIR image (ONI). The
transformation is global since it is applied to the entire image.
Suppose pixel (x, y) in the OMI corresponds to pixel (i, v) in

9=sin"!(

—sin! —sin~

b x"] X @

where @ is the 2 X 3 transformation matrix. Elements a, b,
¢, and d in @ are the factors related to the possible scaling and
rotation of the two coordinate systems. Elements xg and yg
represent the displacements in the x— and y—axes, respective-
ly. Matrix @ can be solved by picking at least six points in the
mid-infrared image plane, and obtaining at least six sets of
X, y, u, and v values for equation 2.

The different focal lengths of the two sensors in the system
cause resolution differences (NIR image resolution is
1.09 mm/pixel; MIR image resolution is 1.27 mm/pixel)
between the original near—infrared and mid—infrared images.
The same objects appear different sizes in the mid—infrared
and the near—infrared images. In our system, the image size
of an object in a mid—infrared image is smaller than that in
a near—infrared image. A bilinear interpolation method is
used to rescale the mid—infrared image. In this way, the
system resolution is unified as 1.09 mm/pixel. Suppose the
scaling factors in the x and y directions are dy and d,
respectively, as shown in figure 3. Bilinear interpolation
takes the weighted average of a 2 X 2 pixel neighborhood as
the assigned value to evaluate the interpolated pixel. Weights
are determined by measuring the distance from the interpo-
lated pixel to its nearest four surrounding pixels. The value
of the interpolated pixel (P) in figure 3 can be evaluated as
follows:

Pr2=d.p+(1-d;)p;
P3a=dyp3+(1—d,)py

p=dypp+(1-dy)p3y
=dxdyp1+(1—dx)dyp2+dx(1—dy)p3
+(=d,)(1-dy)py (3)
where
P1, P2, D3, p4 = the pixel values from a 2 X 2 pixel

neighborhood of the interpolated pixel P
p = pixel value of P

ONI, then: pi2 and p34 = intermediate pixel values used to derive
the value of p.
d
....... > <
Camera A ; Camera B
b A
a
Sphere-shaped object C h
conveyor 7 v

Figure 2. Schematic representation of the relationship among the sensing objects and the NIR/MIR sensors.
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Figure 3. Schematic representation of binary interpolation.
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Figure 4. Flowchart of the online image processing procedure.

DuAL-IMAGE PROCESSING

Figure 4 shows a flowchart of the dual-image preproces-
sing and combination schemes applied in this study. Sepa-
rated processing methods were applied to the dual sensor
images, and the combination results were evaluated.

NIR Image Normalization

In the near—infrared spectrum from 700 to 1000 nm, a
dark—colored fruit has a lower light reflectance than a
bright—colored fruit. Different brightness levels cause detec-
tion errors, especially for bright—colored defective apples
and dark—colored good apples. To avoid these kinds of errors,
a normalization operation is applied to the original NIR
image (ONI). The details of the method can be found in Wen
and Tao (1998a, 1998b). The normalized NIR image (NNI)
can be obtained from ONI by eliminating the effect of the
brightness variations in ONI:

ONI(x,y)

NNI(x,y)=c, T ()
max >

“4)
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where
Imax(x, y) = max[ONI(x, y)] for all (x, y)
Co = constant equal to 255 in this application.

Imax is generated by a recursive calculation represented by
the following formulation:

Imax (x7 y)k = maX{Irnax (x_x’7 y _y’)k—l

+B(xX’, y)(x—x",y—y’)e Dy;(x,y)e Dg ®)

I ax(x%,¥)g =ONI(x,y);k =1,23... (6)

where
B = all-zero 3 X 3 mask matrix
D; = domain of I,y
Dg = domain of B.

Adaptive Spherical Transform for NIR Image

Apples are considered to have substantially spherical
shapes. The curved apple surface causes inconsistent reflec-
tion of the light. As a result, in an NIR image, the intensity
distribution on sensed apples is not uniform. The pixels
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Figure 5. Schematic representation of the principle of spherical trans-
formation.

around the boundary of the apple appear at a much lower
intensity than the central pixels. The defective portions of
apples also appear at a low intensity in the NIR image, and
the intensity levels of the two kinds of pixels are comparable.

An effective method, called the adaptive spherical
transform method, is used to distinguish them. A detailed
description of this method can be found in Tao (1996) and Tao
and Wen (1999). The idea of this method is to transform the
edges of spherical objects to an intensity level near the
intensity of the center, and thus to generate a plane object
image with uniform intensity without losing defect informa-
tion. The basic principle can be represented as shown in
figure 5. Three images are involved in the transformation
process: a normalized near—infrared image (Iyn), an inversed
image (Iyv1), and a synthesized image. The inversed image
(INT) is a mirror image of NNI with the same shape and image
size but without any defects. INI is generated by the
following equation:

INI(x,y)=
cofl=Ry (5;(x, ) }5(x y) c NOKx, y),s =S4} (7)

where

s = size of the apples

S¢ = subset of size variation in pixels.

Rn[s; (x, y)] = OOI[s; (x, )] / Tnax[s; (x, y)] is the reflection
correction function. The light reflectance on the curved
surface differs from point to point. The inversed image INI
can be considered as a group of transformation curves varied
by different sizes of the objects. The transformation curves
of two different—sized objects are shown in figure 6. The TNI
is obtained by combining NNI and INI:

TNI(x,y)=NNI(x,y)+ INI(x,y),(x,y)Cs;  (8)

where s; represents the pixels within the range of interest in
NNL

Global Threshold on MIR Image

The mid-infrared sensor is sensitive to the temperature
differences on the objects within its field of view. Low—tem-
perature objects present less intensity in the mid—infrared
image than high—temperature objects. According to the
different material characteristics and concave shape on both
stem—ends and calyxes of apples, the temperature in these
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Figure 6. Spherical transform curves for two different—sized objects.

areas of the apple is lower than in other parts of the apple
surface after being refrigerated. As a result, stem—ends or
calyxes appear different from the other part of the apple by
presenting a lower intensity level in the MIR image. On the
contrary, defects show the same intensity levels as the
non—defective parts of apples.

To extract the stem—ends and calyxes from the original
MIR apple images, the background is removed and only the
object of interest is considered. A global threshold is used for
the original MIR image to obtain the MI image as:

OMI(x,y) OMI(x,y)<T,
MI =
() { 0 others )

where T is the global threshold value.

Blob Analysis on NIR and MIR

Blob analysis is performed on the TNI and MI images
separately to classify the pixels into different regions (or
blobs). To apply blob analysis, two steps are needed: blob
identification and blob labeling. Blob identification is used
to categorize pixels into groups according to the similarity of
certain features. Blob labeling is used to segment the
identified pixels into different blobs according to their spatial
positions.

Pixels with similar features are classified into the same
group. Feature vectors are used to describe those features. For
instance, let x; be the feature vector for pixel k. Mathemati-
cally, x; is represented as x; = [X¢1, Xk2,-.., Xim 7. Similarly, x;
is the feature vector for pixel j, and can be expressed as x; =
[%1, Xj2,..., Xjm] ™. To judge the similarity of the two pixels, the
Euclidean distance between two feature vectors (Ejy) is
calculated as:

Ejk:

\/(le —x1)% +(xj2 = X32) Fo (X —Xpm)” (10

If a threshold feature vector xp is given, then all pixels in
the image can be separated into two groups.

In both TNI and M1, the feature of a pixel is simply equal
to the gray level of the pixel. For TNI, the pixels are
segmented into non—defective and defective (including
stem—ends and calyxes) groups. In MI, pixels are also
segmented into two groups: stem—ends/calyxes and blobs,
where the blob represents the other portion of the apple. For
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a given feature vector xo, the segmented image is called the
blob identification image (BII), which can be obtained by:

1 Ey <Ey

Bl yi) = {O others

(11)

Here, Ej;, is a threshold value for Euclidean distance.

Blob labeling is used to identify the connected component
in BII. The algorithm seeks to identify connected groups of
pixels in BII that all have the same binary value 1 by scanning
the entire image from top to bottom and from left to right. Let
r(x, y) represents the blob-labeling image. When the
BII(x, y) = 1, the process of the algorithm used to determine
the r(x, y) can be described as follows:

rini(xs y) ZO;

r(x, y)= (12)
0 Bll(x-1,y)=BII(x,y—1)=0;
r(x—1y)=1  Bll(x-1,y)=1&BII(x,y-1)=0;
r(xy-1)=1  Bll(x-1y)=0&BIl(x,y-1)=1

r(x—1y)=r(x,y—1)=1 BIIl(x—1,y)=1&BII(x,y-1) =1,

After performing the two steps of blob analysis to TNI and
MI, blob—extracted NIR images (BNI) and blob—extracted
MIR images (BMI) are obtained.

DUAL-IMAGE SYNTHESIS
The BNI and BMI images are compared to remove
stem—ends and calyxes from true defects in the results. The

combination of BNI and BMI is used to decide which blob
extracted in BNI represents the stem—end or calyx. In the
final combined image (CI), the blobs that represent the
stem—ends or calyxes are eliminated, and only the blobs of
true defects remain. CI is generated by a recursive calcula-
tion:

0  if BNI(x,y)=k and BMI(x, y)#0
Clk(x’y):{ f BNI(x, y) (x,)

BNI(x,y) others (13)
B 0 if Cl,. (x,y)=k;
Clien ()= {CI (x5 y) others (14)

where k = 1,..., N represents the N number of blobs in BNI.

RESULTS AND DISCUSSION

A series of the intermediate images and the final image are
presented in figure 7. Figure 7a represents the original NIR
image output from the NIR sensor. The apple in the lower
right is a non-bruised apple, which was used as the control.
Each of the other three apples has at least one defect (the
apple in the upper left has two defects). Note that, except for
the apple in the upper left, the original near—infrared image
shows the stem—end of the apple. The brightness levels of the
apples are not uniform. The maximum gray level in the
original near—infrared image is typically around 190, and the
minimum gray level is 25. The dynamic range of the image
is 165.

The normalized NIR image is shown in figure 7c. Notice
that the brightness levels of the apples were adjusted to be the

(a) (©

fg ¢

(b) )

(e) (®

® ()

Figure 7. An example result of the dual-sensor NIR/MIR algorithm: (a) the original NIR image, (b) background-removed MIR image, (c) normalized
NIR image, (d) resized MIR image, (e) adaptive—transformed NIR image, (f) blob—extracted MIR image, (g) blob—extracted NIR image, and (h) final

NIR/MIR combination image.
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same. The maximum gray level of the image became 255.
Thus, the dynamic range of image was widened to the
maximum. However, the boundaries around the apples show
obviously lower gray levels compared with the center parts.

The adaptive spherical transformation method via equa-
tions 7 and 8 was used to address this problem. As shown in
figure 7e, the gray levels around the boundary areas of the
apples were boosted to be the same as the center areas. The
non-bruised areas of the apples are now in the same
gray—level plane, while the gray levels in the defective areas
remain unchanged. It becomes much easier to apply the blob
feature extraction analysis to the transformed NIR image
than to the raw NIR image. The extracted blobs containing
true defects, stem—ends, and noises are shown in figure 7g.
Noises are usually small blobs, ranging from one to three
pixels in area. These small blobs can be eliminated by
morphological operations.

Small defects that are three or four pixels in area
(3~4 mm?2) are sometimes confused with noises. Applying
the morphological operations to eliminate the noises requires
the proper threshold value to measure the blob size of the
noise. If the recognition accuracy of small defects is
important, then the threshold value should be small, such as
two pixels. If a good apple classification rate is crucial, then
the threshold value should be larger, such as four pixels. A
good tradeoff value should be determined according to
different applications.

For the mid—infrared thermal sensor, the sensed image is
different from the near—infrared one. Figure 7b shows the
image of the same four apples sensed by the thermal camera.
The background information removed is shown in figure 7b.
It can be observed that the sizes of the objects in the image
are smaller compared with those in the ONI image (fig. 7a).
The registration of the two images involves the operations of
coordinate transformation and linear interpolation. The
result is shown in figure 7d, where the objects are of the same
sizes as those in the NIR images. In the MIR images, the gray
levels of stem—ends are lower than those of the other areas of
the apples. The defective areas become “invisible” to the
sensor. Blob analysis of the MIR image results in the
recognition of only the stem—ends of the apples, as shown in
figure 7f.

Based on the information in figures 7f and 7g, the images
are combined, compared, and compensated to produce the
final image shown in figure 7h. Only true defects are obtained
in the result.

During the testing, a total of 36 stem—ends and 48 calyxes
were sensed within the field of view for each camera. The
final classification rates for the stem—ends and calyxes are
shown in figure 8. Recognition rates of about 94% for
stem—ends and 92% for calyxes were achieved on the test
samples.

All of the 19 good apples were classified as good during
the test. A classification accuracy of 100% was therefore
obtained for good apples. A classification accuracy of 92%
was achieved for defective apples. The recognition rates for
both good apples and defective apples show the feasibility
and efficiency of the dual-sensor method. The misclassifica-
tions usually happened in two situations: when the stem—end
or calyx appeared near the edge of the observed apple
surface, or when small defects appeared very near the
stem—ends or calyxes. The first situation can be improved by
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Figure 8. Test result of sample recognition rates for online dual NIR/MIR
sensing algorithm.

adjusting the threshold values in the imaging algorithms,
while the second situation can be improved by performing the
morphological operations.

Another factor that might affect the inspection results is
the temperature distribution on the surface of the test
samples. The thermal camera is sensitive to temperature
changes above 0.1°C. It is impossible to implement absolute-
ly uniform temperature distribution during the online tests.
Some apple samples have non—uniform temperature distribu-
tion on their surfaces. As a result, non—uniform changes in
gray levels were observed in the MIR images. Fortunately,
these non—uniform distributions of gray levels were not
significant, and proper selection of the global threshold in the
MIR algorithm would minimize their influence.

CONCLUSIONS

An online dual-sensor NIR/MIR imaging method has
been proposed and presented in this article. The sensing
effects of the dual-spectrum system were examined, and a
classification accuracy of more than 92% was achieved for
online apple defect recognition. Using the 700-750 nm
wavelength sensor, both defects and stem—ends on the apple
were detected. The thermal sensor with a spectrum of 7.5 to
12.5 microns was demonstrated to be effective in identifying
the stem—ends and calyxes on the apples.

The statistical results on the performance of the algo-
rithms show the feasibility of the dual-sensing methodology.
The 100% recognition rate for good apples shows that the
system is sensitive to type—I errors. The test results also show
that the proposed method of image registration and dual-
image combination reduces the possible misclassification
rate of stem—ends and calyxes to 6% and 8%, respectively.
The methodology and algorithms can be considered an
extension of the inspection strategy and be used for other
fruits or similar objects.
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